Promedios móviles - promedios simples y exponenciales - Simple y exponencial Introducción Los promedios móviles suavizan los datos de precios para formar un indicador de tendencia siguiente. No predicen la dirección del precio, sino que definen la dirección actual con un retraso. Los promedios móviles se retrasan porque están basados en precios pasados. A pesar de este retraso, las medias móviles ayudan a suavizar la acción de los precios y filtran el ruido. También forman los bloques de construcción de muchos otros indicadores técnicos y superposiciones, como Bollinger Bands. MACD y el oscilador de McClellan. Los dos tipos más populares de promedios móviles son el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA). Estos promedios móviles pueden usarse para identificar la dirección de la tendencia o definir niveles potenciales de soporte y resistencia. Aquí hay un gráfico con un SMA y un EMA en él: Cálculo del promedio móvil simple Un promedio móvil simple se forma computando el precio medio de un título sobre un número específico de períodos. La mayoría de las medias móviles se basan en los precios de cierre. Una media móvil simple de 5 días es la suma de cinco días de los precios de cierre dividida por cinco. Como su nombre lo indica, un promedio móvil es un promedio que se mueve. Los datos antiguos se eliminan a medida que vienen disponibles nuevos datos. Esto hace que el promedio se mueva a lo largo de la escala de tiempo. A continuación se muestra un ejemplo de un promedio móvil de 5 días que evoluciona en tres días. El primer día de la media móvil simplemente cubre los últimos cinco días. El segundo día de la media móvil desciende el primer punto de datos (11) y añade el nuevo punto de datos (16). El tercer día de la media móvil continúa cayendo el primer punto de datos (12) y añadiendo el nuevo punto de datos (17). En el ejemplo anterior, los precios aumentan gradualmente de 11 a 17 en un total de siete días. Observe que la media móvil también aumenta de 13 a 15 durante un período de cálculo de tres días. También observe que cada valor promedio móvil es justo debajo del último precio. Por ejemplo, el promedio móvil para el primer día es igual a 13 y el último precio es 15. Los precios de los cuatro días anteriores fueron más bajos y esto hace que el promedio móvil se retrasa. Cálculo del promedio móvil exponencial Los promedios móviles exponenciales reducen el retraso aplicando más peso a los precios recientes. La ponderación aplicada al precio más reciente depende del número de periodos de la media móvil. Hay tres pasos para calcular una media móvil exponencial. En primer lugar, calcular el promedio móvil simple. Un promedio móvil exponencial (EMA) tiene que comenzar en alguna parte así que una media móvil simple se utiliza como EMA anterior del período anterior en el primer cálculo. Segundo, calcule el multiplicador de ponderación. En tercer lugar, calcular la media móvil exponencial. La siguiente fórmula es para un EMA de 10 días. Una media móvil exponencial de 10 períodos aplica una ponderación de 18.18 al precio más reciente. Un EMA de 10 periodos también puede ser llamado un EMA 18.18. Una EMA de 20 periodos aplica una ponderación de 9.52 al precio más reciente (2 / (201) .0952). Observe que la ponderación para el período de tiempo más corto es más que la ponderación para el período de tiempo más largo. De hecho, la ponderación disminuye a la mitad cada vez que el período de media móvil se duplica. Si desea un porcentaje específico para un EMA, puede usar esta fórmula para convertirlo en períodos de tiempo y luego ingresar ese valor como el parámetro EMA039s: A continuación se muestra un ejemplo de hoja de cálculo de una media móvil sencilla de 10 días y un valor de 10- Promedio móvil exponencial para Intel. Los promedios móviles simples son directos y requieren poca explicación. El promedio de 10 días se mueve simplemente mientras que nuevos precios están disponibles y los viejos precios caen apagado. El promedio móvil exponencial comienza con el valor de la media móvil simple (22,22) en el primer cálculo. Después del primer cálculo, la fórmula normal se hace cargo. Debido a que un EMA comienza con un promedio móvil simple, su verdadero valor no se realizará hasta 20 o más períodos más tarde. En otras palabras, el valor de la hoja de cálculo Excel puede diferir del valor del gráfico debido al corto período de revisión. Esta hoja de cálculo sólo se remonta a 30 períodos, lo que significa que el efecto de la media móvil simple ha tenido 20 períodos para disipar. StockCharts se remonta al menos 250 períodos (por lo general mucho más) para sus cálculos de modo que los efectos de la media móvil simple en el primer cálculo se han disipado completamente. El factor de Lag Cuanto más largo es el promedio móvil, más el retraso. Una media móvil exponencial de 10 días abrazará los precios de cerca y se convertirá poco después de que los precios giren. Los promedios móviles cortos son como los veleros, ágiles y rápidos de cambiar. Por el contrario, una media móvil de 100 días contiene muchos datos pasados que lo ralentizan. Los promedios móviles más largos son como los petroleros oceánicos - letárgicos y lentos para cambiar. Se necesita un movimiento de precios más grande y más largo para una media móvil de 100 días para cambiar el rumbo. La tabla de arriba muestra el SampP 500 ETF con una EMA de 10 días siguiendo de cerca los precios y una molienda SMA de 100 días más alta. Incluso con la disminución de enero-febrero, la SMA de 100 días mantuvo el curso y no rechazó. La SMA de 50 días se sitúa entre los promedios móviles de 10 y 100 días cuando se trata del factor de retraso. Simples versus promedios móviles exponenciales Aunque hay claras diferencias entre promedios móviles simples y promedios móviles exponenciales, uno no es necesariamente mejor que el otro. Los promedios móviles exponenciales tienen menos retraso y, por lo tanto, son más sensibles a los precios recientes y las recientes variaciones de precios. Los promedios móviles exponenciales se convertirán antes de promedios móviles simples. Los promedios móviles simples, por otro lado, representan un verdadero promedio de precios para todo el período de tiempo. Como tales, los promedios móviles simples pueden ser más adecuados para identificar niveles de soporte o resistencia. La preferencia media móvil depende de los objetivos, el estilo analítico y el horizonte temporal. Los cartistas deben experimentar con ambos tipos de medias móviles, así como diferentes plazos para encontrar el mejor ajuste. La siguiente tabla muestra IBM con la SMA de 50 días en rojo y la EMA de 50 días en verde. Ambos culminaron a finales de enero, pero la disminución en la EMA fue más nítida que la disminución de la SMA. La EMA apareció a mediados de febrero, pero la SMA continuó baja hasta finales de marzo. Tenga en cuenta que la SMA apareció más de un mes después de la EMA. Longitudes y plazos La longitud del promedio móvil depende de los objetivos analíticos. Promedios cortos móviles (5-20 períodos) son los más adecuados para las tendencias a corto plazo y el comercio. Los cartistas interesados en las tendencias a mediano plazo optarían por promedios móviles más largos que podrían extenderse entre 20 y 60 períodos. Los inversores a largo plazo preferirán los promedios móviles con 100 o más períodos. Algunas longitudes móviles son más populares que otras. El promedio móvil de 200 días es quizás el más popular. Debido a su longitud, esto es claramente una media móvil a largo plazo. A continuación, el promedio móvil de 50 días es muy popular para la tendencia a mediano plazo. Muchos cartistas utilizan los promedios móviles de 50 días y 200 días juntos. A corto plazo, una media móvil de 10 días fue bastante popular en el pasado porque era fácil de calcular. Uno simplemente agregó los números y movió el punto decimal. Identificación de tendencias Las mismas señales pueden generarse utilizando promedios móviles simples o exponenciales. Como se mencionó anteriormente, la preferencia depende de cada individuo. Estos ejemplos a continuación utilizarán promedios móviles simples y exponenciales. El término media móvil se aplica tanto a promedios móviles simples como exponenciales. La dirección de la media móvil transmite información importante sobre los precios. Una media móvil en ascenso muestra que los precios están aumentando. Una media móvil decreciente indica que los precios, en promedio, están cayendo. El aumento de la media móvil a largo plazo refleja una tendencia alcista a largo plazo. Una caída del promedio móvil a largo plazo refleja una tendencia a la baja a largo plazo. El gráfico anterior muestra 3M (MMM) con una media móvil exponencial de 150 días. Este ejemplo muestra cuán bien funcionan las medias móviles cuando la tendencia es fuerte. La EMA de 150 días rechazó en noviembre de 2007 y otra vez en enero de 2008. Observe que tomó una declinación 15 para invertir la dirección de esta media móvil. Estos indicadores rezagados identifican reversiones de tendencias a medida que ocurren (en el mejor de los casos) o después de que ocurren (en el peor). MMM continuó más bajo en marzo de 2009 y luego subió 40-50. Observe que la EMA de 150 días no apareció hasta después de este aumento. Una vez que lo hizo, sin embargo, MMM continuó más alto en los próximos 12 meses. Los promedios móviles trabajan brillantemente en fuertes tendencias. Crossovers dobles Dos medias móviles se pueden usar juntas para generar señales de cruce. Análisis Técnico de los Mercados Financieros. John Murphy llama a esto el método de crossover doble. Los crossovers dobles implican una media móvil relativamente corta y una media móvil relativamente larga. Como con todas las medias móviles, la longitud general de la media móvil define el marco de tiempo para el sistema. Un sistema que utilice un EMA de 5 días y un EMA de 35 días se consideraría a corto plazo. Un sistema que utilizara un SMA de 50 días y un SMA de 200 días se consideraría de mediano plazo, tal vez incluso a largo plazo. Un cruce alcista ocurre cuando el promedio móvil más corto cruza por encima del promedio móvil más largo. Esto también se conoce como una cruz de oro. Un crossover bajista ocurre cuando el promedio móvil más corto cruza debajo de la media móvil más larga. Esto se conoce como una cruz muerta. Los cruces de media móvil producen señales relativamente tardías. Después de todo, el sistema emplea dos indicadores retardados. Cuanto más largo sea el promedio móvil, mayor será el desfase en las señales. Estas señales funcionan muy bien cuando una buena tendencia se apodera. Sin embargo, un sistema de crossover de media móvil producirá muchos whipsaws en ausencia de una tendencia fuerte. También hay un método triple crossover que implica tres promedios móviles. De nuevo, se genera una señal cuando la media móvil más corta cruza las dos medias móviles más largas. Un simple sistema de crossover triple puede implicar promedios móviles de 5 días, 10 días y 20 días. La tabla anterior muestra Home Depot (HD) con una EMA de 10 días (línea punteada verde) y EMA de 50 días (línea roja). La línea negra es el cierre diario. El uso de un crossover promedio móvil habría dado lugar a tres whipsaws antes de coger un buen comercio. La EMA de 10 días se rompió por debajo de la EMA de 50 días a finales de octubre (1), pero esto no duró mucho ya que los 10 días retrocedieron a mediados de noviembre (2). Esta cruz duró más tiempo, pero el siguiente cruce bajista en enero (3) ocurrió cerca de finales de noviembre los niveles de precios, dando lugar a otro whipsaw. Esta cruz bajista no duró mucho ya que la EMA de 10 días retrocedió por encima de los 50 días unos días después (4). Después de tres malas señales, la cuarta señal prefiguró un movimiento fuerte mientras que la acción avanzó sobre 20. Hay dos takeaways aquí. Primero, los crossovers son propensos al whipsaw. Se puede aplicar un filtro de precio o tiempo para ayudar a prevenir las sierras. Los operadores pueden requerir que el crossover dure 3 días antes de actuar o requiera que la EMA de 10 días se mueva por encima / por debajo del EMA de 50 días por una cierta cantidad antes de actuar. En segundo lugar, MACD se puede utilizar para identificar y cuantificar estos crossovers. MACD (10, 50, 1) mostrará una línea que representa la diferencia entre las dos medias móviles exponenciales. MACD se vuelve positivo durante una cruz de oro y negativo durante una cruz muerta. El oscilador de precio porcentual (PPO) se puede utilizar de la misma manera para mostrar diferencias porcentuales. Tenga en cuenta que MACD y el PPO se basan en promedios móviles exponenciales y no coincidirá con los promedios móviles simples. Este gráfico muestra Oracle (ORCL) con EMA de 50 días, EMA de 200 días y MACD (50.200,1). Hubo cuatro crossovers de media móvil durante un período de 2 1/2 años. Los tres primeros resultaron en whipsaws o malos oficios. Una tendencia sostenida comenzó con el cuarto crossover como ORCL avanzó a mediados de los 20s. Una vez más, los crossovers medios móviles funcionan muy bien cuando la tendencia es fuerte, pero producen pérdidas en ausencia de una tendencia. Crossovers de precios Los promedios móviles también pueden usarse para generar señales con crossovers de precios simples. Una señal alcista se genera cuando los precios se mueven por encima de la media móvil. Se genera una señal bajista cuando los precios se mueven por debajo de la media móvil. Los crossovers de precios se pueden combinar para comerciar dentro de la tendencia más grande. La media móvil más larga establece el tono para la tendencia más grande y la media móvil más corta se utiliza para generar las señales. Uno buscaría cruces de precios alcistas sólo cuando los precios ya están por encima de la media móvil más larga. Esto estaría negociando en armonía con la tendencia más grande. Por ejemplo, si el precio está por encima de la media móvil de 200 días, los cartistas sólo se centrarán en las señales cuando el precio se mueve por encima de la media móvil de 50 días. Obviamente, un movimiento por debajo de la media móvil de 50 días sería precedente de tal señal, pero tales cruces bajistas serían ignorados porque la tendencia más grande ha subido. Una cruz bajista simplemente sugeriría un retroceso dentro de una mayor tendencia alcista. Un retroceso por encima de la media móvil de 50 días señalaría una subida de los precios y la continuación de la mayor tendencia alcista. El siguiente gráfico muestra Emerson Electric (EMR) con la EMA de 50 días y EMA de 200 días. La acción se movió por encima y se mantuvo por encima de la media móvil de 200 días en agosto. Hubo bajadas por debajo de los 50 días EMA a principios de noviembre y de nuevo a principios de febrero. Los precios se movieron rápidamente por encima de la EMA de 50 días para proporcionar señales alcistas (flechas verdes) en armonía con la mayor tendencia alcista. MACD (1,50,1) se muestra en la ventana del indicador para confirmar los cruces de precios por encima o por debajo de la EMA de 50 días. El EMA de 1 día es igual al precio de cierre. MACD (1,50,1) es positivo cuando el cierre está por encima de la EMA de 50 días y negativo cuando el cierre está por debajo de la EMA de 50 días. Soporte y Resistencia Los promedios móviles también pueden actuar como soporte en una tendencia alcista y resistencia en una tendencia bajista. Una tendencia alcista a corto plazo podría encontrar apoyo cerca de la media móvil simple de 20 días, que también se utiliza en bandas de Bollinger. Una tendencia alcista a largo plazo podría encontrar apoyo cerca del promedio móvil de 200 días, que es el promedio móvil más popular a largo plazo. De hecho, el promedio móvil de 200 días puede ofrecer soporte o resistencia simplemente porque es tan ampliamente utilizado. Es casi como una profecía autocumplida. El gráfico de arriba muestra el NY Composite con el promedio móvil simple de 200 días desde mediados de 2004 hasta finales de 2008. Los 200 días de apoyo brindado numerosas veces durante el avance. Una vez que la tendencia se invirtió con una ruptura de apoyo superior doble, el promedio móvil de 200 días actuó como resistencia alrededor de 9500. No espere soporte exacto y niveles de resistencia de promedios móviles, especialmente medias móviles más largas. Los mercados son impulsados por la emoción, lo que los hace propensos a los rebasamientos. En lugar de los niveles exactos, las medias móviles se pueden utilizar para identificar las zonas de apoyo o resistencia. Conclusiones Las ventajas de utilizar promedios móviles deben sopesarse contra las desventajas. Los promedios móviles son tendencia que sigue, o rezagada, los indicadores que serán siempre un paso detrás. Esto no es necesariamente una cosa mala. Después de todo, la tendencia es su amigo y es mejor el comercio en la dirección de la tendencia. Medias móviles aseguran que un comerciante está en línea con la tendencia actual. A pesar de que la tendencia es su amigo, los valores pasan una gran cantidad de tiempo en rangos comerciales, lo que hace que los promedios móviles sean ineficaces. Una vez en una tendencia, los promedios móviles le mantendrá en, pero también dar señales tardías. Don039t esperan vender en la parte superior y comprar en la parte inferior utilizando promedios móviles. Al igual que con la mayoría de las herramientas de análisis técnico, las medias móviles no deben usarse por sí solas, sino en conjunto con otras herramientas complementarias. Los cartistas pueden usar promedios móviles para definir la tendencia general y luego usar RSI para definir los niveles de sobrecompra o sobreventa. Adición de promedios móviles a los gráficos de StockCharts Los promedios móviles están disponibles como una función de superposición de precios en el workbench de SharpCharts. Utilizando el menú desplegable Superposiciones, los usuarios pueden elegir un promedio móvil simple o un promedio móvil exponencial. El primer parámetro se utiliza para ajustar el número de períodos de tiempo. Se puede agregar un parámetro opcional para especificar el campo de precio que se debe utilizar en los cálculos: O para el Abierto, H para el Alto, L para el Bajo y C para el Cierre. Una coma se utiliza para separar los parámetros. Se puede agregar otro parámetro opcional para cambiar las medias móviles a la izquierda (pasado) oa la derecha (futuro). Un número negativo (-10) cambiaría la media móvil a la izquierda 10 períodos. Un número positivo (10) cambiaría la media móvil a los 10 periodos correctos. Múltiples promedios móviles pueden superponerse a la gráfica de precios simplemente agregando otra línea de superposición al workbench. Los miembros de StockCharts pueden cambiar los colores y el estilo para diferenciar entre varios promedios móviles. Después de seleccionar un indicador, abra Opciones avanzadas haciendo clic en el pequeño triángulo verde. Las Opciones avanzadas también se pueden usar para agregar una superposición de promedio móvil a otros indicadores técnicos como RSI, CCI y Volumen. Haga clic aquí para un gráfico en vivo con varios promedios móviles diferentes. Usando los promedios móviles con las exploraciones de StockCharts Aquí hay algunas exploraciones de la muestra que los miembros de StockCharts pueden utilizar para explorar para varias situaciones del promedio móvil: Movimiento Promedio alcista Cruz: Esta exploraciones busca las poblaciones con una media móvil simple de 150 días y una cruz alcista de los 5 EMA y EMA de 35 días. La media móvil de 150 días está subiendo, siempre y cuando se está negociando por encima de su nivel hace cinco días. Una cruz alcista ocurre cuando la EMA de 5 días se mueve por encima de la EMA de 35 días sobre un volumen por encima del promedio. Media bajista media móvil: Esta escanea busca acciones con una media móvil simple descendente de 150 días y una cruz bajista de la EMA de 5 días y de la EMA de 35 días. La media móvil de 150 días está cayendo, siempre y cuando se está negociando por debajo de su nivel hace cinco días. Una cruz bajista ocurre cuando la EMA de 5 días se mueve por debajo de la EMA de 35 días sobre un volumen por encima del promedio. Estudio adicional El libro de John Murphy tiene un capítulo dedicado a los promedios móviles ya sus diversos usos. Murphy cubre los pros y los contras de los promedios móviles. Además, Murphy muestra cómo los promedios móviles trabajan con Bollinger Bands y los sistemas comerciales basados en canales. Análisis técnico de los mercados financieros John MurphyExponential Filter Esta página describe el filtro exponencial, el filtro más simple y más popular. Esto forma parte de la sección Filtrado que forma parte de Guía de detección y diagnóstico de fallas. Resumen, constante de tiempo y equivalente analógico El filtro más simple es el filtro exponencial. Tiene sólo un parámetro de sintonización (distinto del intervalo de muestreo). Requiere el almacenaje de solamente una variable - la salida anterior. Es un filtro IIR (autorregresivo) - los efectos de un cambio de entrada decaen exponencialmente hasta que los límites de las pantallas o la aritmética computarizada lo oculten. En varias disciplinas, el uso de este filtro se conoce también como suavizado 8220exponencial8221. En algunas disciplinas, como el análisis de inversiones, el filtro exponencial se denomina 8220Valor móvil exponencialmente ponderado8221 (EWMA), o simplemente 8220Valor móvil exponencial8221 (EMA). Esto abusa de la terminología ARMA 8220moving media8221 tradicional de análisis de series de tiempo, ya que no hay historial de entrada que se utiliza - sólo la entrada actual. Es el equivalente en tiempo discreto del lag8221 de primer orden utilizado comúnmente en el modelado analógico de sistemas de control de tiempo continuo. En circuitos eléctricos, un filtro RC (filtro con una resistencia y un condensador) es un retraso de primer orden. Al enfatizar la analogía con los circuitos analógicos, el parámetro de ajuste único es la constante de tiempo 82208221, usualmente escrita como la letra griega Tau (). De hecho, los valores en los tiempos de muestra discretos coinciden exactamente con el retardo de tiempo continuo equivalente con la misma constante de tiempo. La relación entre la implementación digital y la constante de tiempo se muestra en las ecuaciones siguientes. Ecuaciones de filtro exponencial e inicialización El filtro exponencial es una combinación ponderada de la estimación anterior (salida) con los datos de entrada más recientes, con la suma de los pesos igual a 1 para que la salida coincida con la entrada en estado estacionario. Siguiendo la notación de filtro ya introducida: y (k) ay (k-1) (1-a) x (k) donde x (k) es la entrada cruda en el paso de tiempo ky (k) es la salida filtrada en el paso de tiempo ka Es una constante entre 0 y 1, normalmente entre 0,8 y 0,99. (A-1) o a se denomina a veces la constante de suavizado 82208221. Para sistemas con un paso de tiempo fijo T entre muestras, la constante 8220a8221 se calcula y se almacena por conveniencia sólo cuando el desarrollador de aplicaciones especifica un nuevo valor de la constante de tiempo deseada. Para los sistemas con muestreo de datos a intervalos irregulares, se debe utilizar la función exponencial anterior con cada paso de tiempo, donde T es el tiempo transcurrido desde la muestra anterior. Normalmente, la salida del filtro se inicializa para que coincida con la primera entrada. A medida que la constante de tiempo se aproxima a 0, a pasa a cero, por lo que no hay filtrado 8211 la salida es igual a la nueva entrada. A medida que la constante de tiempo se vuelve muy grande, se aproxima a 1, de modo que la nueva entrada es casi ignorada 8211 filtración muy pesada. La ecuación de filtro anterior puede ser reordenada en el siguiente equivalente predictor-corrector: Esta forma hace más evidente que la estimación de la variable (salida del filtro) se predice como sin cambios desde la estimación anterior y (k-1) más un término de corrección basado en En la inesperada 8220innovación 8221 - la diferencia entre la nueva entrada x (k) y la predicción y (k-1). Esta forma es también el resultado de derivar el filtro exponencial como un simple caso especial de un filtro de Kalman. Que es la solución óptima a un problema de estimación con un conjunto particular de suposiciones. Paso de respuesta Una forma de visualizar el funcionamiento del filtro exponencial es trazar su respuesta en el tiempo a una entrada escalonada. Es decir, comenzando con la entrada y salida del filtro a 0, el valor de entrada cambia repentinamente a 1. Los valores resultantes se representan a continuación: En la gráfica anterior, el tiempo se divide por la constante de tiempo del filtro tau para que pueda predecir más fácilmente Los resultados para cualquier período de tiempo, para cualquier valor de la constante de tiempo del filtro. Después de un tiempo igual a la constante de tiempo, la salida del filtro aumenta a 63,21 de su valor final. Después de un tiempo igual a 2 constantes de tiempo, el valor sube a 86,47 de su valor final. Las salidas después de tiempos iguales a 3,4 y 5 constantes de tiempo son 95,02, 98,17 y 99,33 del valor final, respectivamente. Dado que el filtro es lineal, esto significa que estos porcentajes pueden usarse para cualquier magnitud del cambio de paso, no sólo para el valor de 1 usado aquí. Aunque la respuesta de paso en teoría toma un tiempo infinito, desde un punto de vista práctico, piense en el filtro exponencial como 98 a 99 8220done8221 respondiendo después de un tiempo igual a 4 a 5 constantes de tiempo de filtro. Variaciones en el filtro exponencial Existe una variación del filtro exponencial llamado filtro exponencial no lineal que pretende filtrar fuertemente el ruido dentro de una amplitud determinada, pero luego responder más rápidamente a cambios más grandes. Documentación Este ejemplo muestra cómo usar los filtros de media móvil y el remuestreo para aislar el efecto de componentes periódicos de la hora del día sobre las lecturas de temperatura por hora, así como eliminar el ruido de línea no deseado de una zona abierta - medición del voltaje del volante. El ejemplo también muestra cómo suavizar los niveles de una señal de reloj mientras se conservan los bordes usando un filtro mediano. El ejemplo también muestra cómo usar un filtro Hampel para eliminar grandes valores atípicos. Motivación El suavizado es cómo descubrimos patrones importantes en nuestros datos sin dejar de lado cosas que no son importantes (es decir, ruido). Utilizamos filtrado para realizar este suavizado. El objetivo de suavizar es producir cambios lentos en el valor de modo que sea más fácil ver tendencias en nuestros datos. A veces, cuando se examinan datos de entrada, es posible que desee suavizar los datos para ver una tendencia en la señal. En nuestro ejemplo tenemos un conjunto de lecturas de temperatura en Celsius tomadas cada hora en el Aeropuerto de Logan durante todo el mes de enero de 2011. Tenga en cuenta que podemos ver visualmente el efecto que tiene la hora del día sobre las lecturas de temperatura. Si sólo está interesado en la variación diaria de la temperatura durante el mes, las fluctuaciones horarias sólo contribuyen al ruido, lo que puede hacer que las variaciones diarias sean difíciles de discernir. Para eliminar el efecto de la hora del día, ahora queremos suavizar nuestros datos utilizando un filtro de media móvil. Un filtro de media móvil En su forma más simple, un filtro de media móvil de longitud N toma el promedio de cada N muestras consecutivas de la forma de onda. Para aplicar un filtro de media móvil a cada punto de datos, construimos nuestros coeficientes de nuestro filtro para que cada punto sea igualmente ponderado y aporte 1/24 a la media total. Esto nos da la temperatura promedio en cada período de 24 horas. Filter Delay Observe que la salida filtrada se retrasa aproximadamente doce horas. Esto se debe al hecho de que nuestro filtro de media móvil tiene un retraso. Cualquier filtro simétrico de longitud N tendrá un retardo de (N-1) / 2 muestras. Podemos dar cuenta de este retraso manualmente. Extracción de las diferencias promedio Alternativamente, también podemos usar el filtro del promedio móvil para obtener una mejor estimación de cómo el tiempo del día afecta la temperatura total. Para ello, primero, restar los datos suavizados de las mediciones de temperatura por hora. A continuación, segmentar los datos diferenciados en días y tomar el promedio durante los 31 días del mes. Extracción de la envolvente de pico A veces también nos gustaría tener una estimación que varía suavemente de cómo los altos y bajos de nuestra señal de temperatura cambian diariamente. Para ello, podemos usar la función de envolvente para conectar los máximos y mínimos extremos detectados en un subconjunto del período de 24 horas. En este ejemplo, aseguramos que haya al menos 16 horas entre cada extremo alto y extremo bajo. También podemos tener una idea de cómo los máximos y bajos son tendencia tomando el promedio entre los dos extremos. Filtros de Promedio Móvil Ponderado Otros tipos de filtros de media móvil no ponderan igualmente cada muestra. Otro filtro común sigue la expansión binomial de (1 / 2,1 / 2) n Este tipo de filtro se aproxima a una curva normal para valores grandes de n. Es útil para filtrar el ruido de alta frecuencia para n pequeños. Para encontrar los coeficientes para el filtro binomial, convolucione 1/2 1/2 con sí mismo y convierta iterativamente la salida con 1/2 1/2 un número prescrito de veces. En este ejemplo, utilice cinco iteraciones totales. Otro filtro algo similar al filtro de expansión gaussiano es el filtro de media móvil exponencial. Este tipo de filtro de promedio móvil ponderado es fácil de construir y no requiere un tamaño de ventana grande. Ajusta un filtro de media móvil ponderado exponencialmente por un parámetro alfa entre cero y uno. Un valor más alto de alfa tendrá menos suavizado. Amplíe las lecturas durante un día. Selecciona tu pais
No comments:
Post a Comment